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Abstract

Networking with containers is becoming increasingly prevalent in many industries due
to their lightweight and flexible approach to virtualization. We evaluate the viability of
containers for reliable low-latency networking. Previous work measures latencies with-
out high accuracy and precision in the µs range, focuses on heavy-weight virtualization,
or prioritizes bandwidth analysis over latencies. This thesis compares network laten-
cies of containers with virtual machines and specifically focuses on tail latencies. We
build a program to orchestrate containers in the testbed, then use existing tooling to
measure latencies and compare them with measurements of virtual machines and bare
metal. The results of this thesis indicate that containers perform identically compared
to virtual machines; however, they are less isolated and more susceptible to interference
by programs running on the host. Interferences can cause spikes in tail latencies, which
can be mitigated by using a real-time kernel.
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Chapter 1

Introduction

With Industry 4.0 the convergence of information technology (IT) and operational tech-
nology (OT) advances and forces the evaluation of existing technology under new con-
ditions; for example, low-latency networking with containers is becoming increasingly
prevalent. Industrial applications have strict latency requirements: on the one hand,
a response must occur within 0.5 ms and on the other hand, the variance in response
times should be minimized, even for the 99.99999th (7 nines) percentile of packets [1].
Traditionally, a programmable logic controller (PLC) controls manufacturing processes,
machines, and robots and provides data on the current state. A PLC is an industrial
computer specialized in high availability, fault tolerance, reliability, and low latency [2].
Typically, a PLC has to meet hard real-time requirements: no deadline can be missed.

Some computers collect data generated by a PLC or other sensors and send them to
another more powerful computer for analysis. When systems rely on these computed
results, transmitting the data over the Internet is infeasible due to unreliable high
latencies. Hence, the industry is moving towards edge computing, which moves some
parts of the data analysis from the cloud closer to the manufacturing plants. An edge
computer often features a wireless connection to widely distributed sensors. Depending
on the application, an edge computer only meets soft real-time requirements [2], where
missed deadlines are occasionally acceptable [3]. The collected data are processed for
purposes such as logging, visualization, and monitoring. Typically, an edge computer
runs on specialized equipment that is optimized for goals such as adaptability, scalability,
safety, latency, and resilience. Multiple edge computers may depend on each other’s
data. Meeting real-time constraints between PLC and communication with other edge
computers requires a reliable high-performance, low-latency interconnection.
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Multiple services can run on one edge computer; however, they should not affect each
other. Virtualization is creating an abstraction layer on top of a computer and its re-
sources, so that multiple virtual computers may utilize these resources. Each virtual
computer is isolated from the rest of the system and uses only the allocated resources.
With virtualization, the deployment of an edge computer is standardized, scalable, and
rapid. This increases maintainability, reduces errors, and saves money. There are two
forms of virtualization: heavy-weight virtualization with virtual machines (VMs) and
lightweight virtualization with containers. In recent years, container implementations
such as Docker and Linux containers (LXC) have gained significant popularity. Con-
tainers facilitate the creation of portable software services by integrating the required
environment and dependencies, but not every part of an operating system is virtualized.
On the one hand, containers share the kernel with the host, and on the other hand, con-
tainers typically rely on kernel-level features of the host to isolate certain resources so
that full virtualization of hardware is not necessary. Additional properties such as cold
starts in milliseconds and hardware independence render containers a widely applicable
technology. For these reasons, containers might be suitable as an underlying technology
for certain edge computers.

This thesis investigates the viability of containers for virtual, ultra reliable low-latency
communication (URLLC). To do so, we answer the following research questions.

• RQ1: Are containers viable for virtual URLLC?

• RQ2: How large is the difference in network latencies between containers and
VMs?

• RQ3: What are the root causes for the observed differences, and what can we do
to minimize them?

We use HVNet [4], a project for low-latency networking with VMs as a framework. We
extend this project to support LXC and optimize these containers for predictable low
latencies. Although Docker is more popular, we decide to use LXC, which mimics the
behavior of a VM more closely. To answer RQ1, we take into account whether it is
possible to run the measurement tooling in a container and whether we can achieve a
sufficient amount of isolation. After integrating containers into HVNet, the same tooling
is available for both VMs and containers. Additionally, we also conduct baseline exper-
iments on bare metal and compare the network latencies of containers, VMs and bare
metal. These measurements are the basis for the answer of RQ2 and also contribute
to RQ1. Tail latencies are of special interest to investigate how reliable containers are
and are analyzed as part of RQ3. Furthermore, we analyze the differences between
containers and VMs and how they could affect latencies.
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1.1 Contributions

1.1 Contributions

This thesis addresses the research questions by extending an existing framework for
virtual URLLC with containers. We perform a structured comparison between the two
virtualization techniques and gather quantifiable evidence for differences in network
latencies. The main contributions of this thesis include:

• implementing tooling for low-latency network experiments with containers.

• proposing a framework for running networking tooling such as Data Plane Devel-
opment Kit (DPDK) in containers. Often scripts are written with the assumption
of running on bare metal, so that access to certain kernel features fails in contain-
ers.

1.2 Outline

The remaining thesis is structured as follows. Chapter 2 introduces background infor-
mation such as CGroups and namespaces, HVNet [4], and DPDK. Next, Chapter 3
covers studies that have already been conducted related to this thesis. In Chapter 4
we analyze problems related to virtual networking, containers, and factors that influ-
ence latencies. The implementation process is detailed and presented in Chapter 5. In
Chapter 6 the measurement methodology is introduced, our results are discussed and
compared with VMs. Finally, in Chapter 7, we summarize our findings and suggest
future work.
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Chapter 2

Background

The main area of application for this thesis is low-latency networking with contain-
ers. An overview of the characteristics, advantages, and disadvantages of containers is
presented in Section 2.1. Kernel-level features that are detrimental to containers are
introduced in Sections 2.1.1 and 2.1.2. For low-latency scalable networking on a single
host, we use single root I/O virtualization (SR-IOV), which we introduce in Section 2.2.
In Section 2.3 we introduce HVNet, a set of scripts for low-latency virtual networking
on a single host, which we extend in this thesis. Lastly, Section 2.4 explains DPDK, a
framework for high-performance networking in userspace.

2.1 Container

In recent years, containers have been established as a competitive alternative to VMs.
Both are a form of virtualization. There are three generic types of virtualization [3]:
full, para, and operating system (OS) level. Containers are classified as OS-level, while
virtual machines belong to the class of full virtualization. Virtualization creates an
abstraction layer over the physical resources so that they can be shared across multiple
processes that are independent and should be isolated from each other.

There are two types of containers [5]: application and system. Application containers
focus on running a single service per container. They typically only bundle the minimum
required libraries to run a single application [6]. The most prominent example is Docker.
A system container mimics an entire operating system, including all libraries. Multiple
processes may run at the same time. Both provide an environment that is separated
from the remaining system in terms of libraries and hardware resources to perform
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specific tasks. There are numerous reasons for classifying containers as lightweight
virtualization.

The first reason is that containers do not emulate their own kernel; instead, they are
controlled by the kernel of the host system. Figure 2.1 demonstrates the architectural
differences between VMs and containers. Unlike a container, each VM has its own kernel,
but requires a hypervisor to manage access to hardware [3]. Sharing the kernel with
the host and other containers has implications on isolation. To remedy some concerns,
modern kernels offer features that help build isolated systems. The most important
features are CGroups and namespaces, which we discuss in Sections 2.1.1 and 2.1.2.

Figure 2.1: Architectural differences between virtual machines and containers

Containers do not need expensive abstraction layers that virtualize CPU, memory, and
I/O [7]. The remaining overhead for isolation is low: In terms of performance, containers
compete with bare metal [6], [8]. Due to the absence of heavy-weight abstraction layers,
it is possible to better utilize physical hardware. A container only uses as many resources
as it needs for the current task while respecting defined limits. Is a resource no longer
required, it is immediately available to other containers or the host. This makes it easy
to overprovision physical resources for more dense deployments.

However, there are downsides: it is not possible to run an OS from a different family in
a container due to the inherited kernel. For example, it is impossible to run a Windows
11 container on top of a Linux kernel. Moreover, interaction with the kernel is limited.
This implies that some features, such as the ability to load kernel modules, are not
available in a container.

2.1.1 Control Groups
Modern versions of the Linux kernel (> 3.10) support control groups, which limit,
prioritize, control, and audit access to physical hardware resources for processes [6].

6



2.1 Container

Listing 2.1: Listing the effectively assigned CPU cores
1 $ cat /sys/fs/cgroup/user.slice/cpuset.cpus.effective
2 0-5

There are two versions of CGroups available. Modern OS, such as Debian Bullseye,
are based on version 2, which changes the internal workings and organization of the
subsystems. Granted that version 1 is in the process of being deprecated, the remaining
Chapter is applicable to version 2.

CGroups are organized hierarchically. This means that a child CGroup inherits all the
properties of its parent, and it is impossible for a child to request more resources than
the parent provides. On a Linux-based OS, CGroups are mounted as a pseudo-filesystem
at /sys/fs/cgroup. The hierarchical structure is reflected in this folder structure. For
example, the CGroup test is mapped to /sys/fs/cgroup/test.

For each resource, such as CPU time, CPU cores, memory, devices, etc., a subsystem
exists. A subsystem restricts, audits, and freezes resources within a CGroup [9]. The
subsystems are reflected as files at each level of hierarchy. An example for a subsystem
is cpuset, which assigns CPU cores to a CGroup. The command in Listing 2.1 shows
the effectively available CPU cores within the user.slice CGroup.

Most Linux distributions rely on systemd as the default init system. When an OS with
systemd boots, systemd creates the root CGroup at /sys/fs/cgroup/ [10]. Moreover,
systemd acts as a manager for the CGroup hierarchy by creating slices that inherit all
subsystems from the root CGroup [11]. A slice is an abstract concept for managing
resources for groups of processes. Depending on the kind of process, it is assigned to a
specific slice. The most important slices are as follows:

• -.slice: root slice, all other slics inherit from this CGroup

• user.slice: user session and all processes running in user space

• system.slice: services and scope units

• machine.slice: virtual machines and systemd containers

For every process, systemd creates a new CGroup as a child of a slice. With CGroups
v2, the CGroup, which hosts a process, must not have a child [12]. The command
systemctl status displays the current CGroup hierarchy of the system.

7
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2.1.2 Namespaces
Namespaces provide different views on system resources by providing abstractions. Each
process running in a namespace appears as the sole owner of the abstracted resources.
Changes to isolated system resources in a namespace are neither visible to the host
nor to other namespaces. Namespaces are completely unrelated to CGroups. Older
versions of the Linux kernel support six different namespaces, while modern versions
provide eight; the TIME and CGROUP namespaces were added recently [13]:

• NET: manages the network stack; own routing table; creates new interfaces

• PID: assigns new process identifiers (PIDs) starting from 1

• UTS: different host and domain name

• MNT: filesystem isolation; mounts new filesystems

• IPC: isolation of signals, pipes, and shared memory

• USER: isolates user and group IDs; maps root user within container to unprivi-
leged user on host.

• TIME: virtualizes two system clocks of a Linux system: CLOCK_MONOTONIC
and CLOCK_BOOTTIME.

• CGROUP: isolates CGroups, so that it appears that the namespace is the owner
of the root CGroup.

A process may join multiple namespaces and multiple processes can join the same name-
space. All things considered, namespaces isolate key OS resources, such as network
stack, PIDs and filesystem. Subsequently, it is possible to create an isolated environ-
ment for lightweight virtualization by relying on kernel-level features.

2.2 Single Root Input/Output-Virtualization

For network experiments on a single host with realistic latencies, every virtual machine
or container requires a network interface card (NIC). However, it is infeasible to assign
one NIC to each node when more than a few nodes are used. On the one hand, computers
will run out of PCIe lanes or slots, and on the other hand, it is expensive to buy dozens
of high-throughput NICs.

SR-IOV, which is an extension of the PCI specification for virtualizing PCIe devices [14],
solves this problem without significantly impacting networking performance. Figure 2.2
illustrates the arrangement of a physical function (PF) and virtual functions (VFs) on

8
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one NIC. A VF is a lightweight PCIe device that has performance-critical resources:
independent memory space, interrupts, and a direct memory access (DMA) stream
to the process using the VF [3]. Each VF is associated with a PF [14], which is a
fully configurable PCIe function. All VFs are connected by a virtual Ethernet (vEth)
bridge, which sorts incoming packets according to the MAC or virtual local area network
(VLAN) tag and delivers them to the right VF [15]. A container or VM controls a VF
by binding it to a VF driver. This setup allows VFs to use DMA to make packets
available to the container.

SR-IOV with VMs requires an input–output memory management unit (IOMMU) to
correctly map the address spaces between the host and the guest. For containers, this is
not necessary, since the address space is shared and no translation of physical to virtual
memory is required.

Figure 2.2: Conceptual illustration of SR-IOV

2.3 Hardware-Assisted Virtual Networking

HVNet [4] is a framework for performing network experiments on a single physical
host with low latencies. Arbitrary topologies can be created by defining them in a
configuration file. As nodes, HVNet is based on VMs, which are interconnected with
SR-IOV. HVNet optimizes the software stack for low latencies by applying a wide variety
of patches. It delegates orchestration and management of the hardware hosts involved
in an experiment to plain orchestration service (pos) [16]. This includes setting up the
desired Linux live images, boot parameters, and out-of-band control with Intelligent
Platform Management Interface (IPMI).

HVNet offers a complete framework to run reproducible and automatic network experi-
ments. To minimize the impact of the packet generator on the Device under Test (DuT),
a separate host can be utilized. Since timestamping of every packet is not possible with

9
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Figure 2.3: Three containers connected in a line with VFs and VLAN IDs

commodity hardware [17], a third host, the timestamper, may be used. Optical splitters
duplicate traffic without adding a delay between the load generator and DuT, and send
it to the timestamper. The timestamper then records the latency for every packet and
outputs a packet capture (pcap) file.

For each virtual node, separate hardware resources, such as the number of CPU cores,
memory, and scripts, may be defined. A separate script for setup, experiment, and
teardown offers a high degree of flexibility in the application of HVNet. The assignment
of CPU cores and memory can be optimized to be non-uniform memory access (NUMA)
aware.

For networking, HVNet uses SR-IOV. Various factors, such as packet processing in the
kernel or userspace, physical hardware, and a wire between network cards contribute to
latencies. For this reason, HVNet assigns VFs from two NICs, which are interconnected
with a physical cable, to VMs. Figure 2.3 shows how an example with three VMs
connected in a line translates into the virtualized setup with VFs. In this setup, there
is one connection between VM 1 and 2, and one connection between 2 and 3. Each
connection is assigned a separate VLAN ID. A connection consists of two VFs located
on different network cards with matching VLAN IDs. This setup forces packets to travel
from one NIC to another via the physical link. Due to the VLAN IDs the packets must
be serialized on the NICs, which adds latency, just like in a bare metal environment [4].

10
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2.4 Data Plane Development Kit

The Data Plane Development Kit (DPDK) is a set of libraries to accelerate packet
processing. Various techniques come into action to increase speed. The conventional
Linux kernel network stack processes incoming packets by raising I/O interrupts, moving
the packets into the kernel buffer, and then into the userspace buffer [18]. Therefore,
with interrupt-based packet processing, packets are copied multiple times in memory,
which is a reason for unpredictable delays. DPDK solves this problem with a userspace
network driver that continuously polls for new packets, zero-copy to bypass the kernel
when copying packets, and hugepages for efficient memory management.

2.4.1 Poll mode driver
The poll mode driver of DPDK is based on the igb_uio kernel driver, which is built
on the userspace I/O framework (uio). The uio framework is an interface between the
kernel and igb_uio protecting driver developers from unstable kernel API and internal
kernel functions and macros [19]. Binding a device to the igb_uio driver creates the
device file in /dev/uioX where X is the number of the device starting at 0. Through these
device files, a developer can interact with PCI devices in userspace programs bypassing
the kernel entirely. For this purpose, the following methods are exposed [19]:

1. mmap(): access to device memory

2. read(): blocking call to mimic the behavior of interrupts. When an interrupt is
caught, the read() call returns.

A downside of the poll mode driver is that one CPU core is constantly occupied with
polling. Due to the shift of networking to userspace, the kernel is no longer involved
and fewer variations in latencies occur [20].

2.4.2 Zero-copy
Zero-copy is a mechanism that eliminates multiple copy actions. Each NIC has one or
more receiving (RX) and transmitting (TX) queues, which are created in main memory.
These queues do not store the entire packet but a descriptor that references the location
of the entire packet. The packet is stored in a separate memory pool. When a packet
arrives, it is copied directly into the memory pool with DMA, and the descriptor is
added to the RX queue. Since DMA requires stable physical addresses, the memory pool
is created in statically allocated 2 MB hugepages, which are excluded from the Linux
page migration mechanism [21]. The memory pool is shared between the NIC and the
application so that incoming packets are immediately available to the applications [18].

11



Chapter 2: Background

This thesis does not work directly with DPDK. Instead, the software packet genera-
tor MoonGen [22], which is built on top of DPDK, is used. MoonGen offers example
scripts for generating and forwarding packets, which reduce the learning curve of inter-
action with DPDK. MoonGen is built on top of libmoon, a library that handles core
functionalities and interfaces with DPDK.

12



Chapter 3

Related work

For many years, substantial interest has been shown in the research of containers and
their underlaying technologies. However, most networking related research focuses on
measuring bandwidth and not latencies. Section 3.1 presents literature related to our
testbed and measurement methodology, which is essential for the prototype and evalu-
ation. The literature in Section 3.2 outlines containers and their performance in low-
latency networking. Finally, Section 3.3 highlights the existing work on optimizing the
software stack for lower latencies.

3.1 Testbed setup and testing methodology

All experiments in this thesis are reproducible because they are implemented on top of
the plain orchestration service (pos) [16]. pos is a novel approach to start a structured
and reproducible experiment. Hosts are controlled out-of-band with IPMI, Intel vPro, or
AMD’s Pro features. Live images ensure that no host is tainted by previous experiments.
Hosts can be parameterized with variables, and processes can be synchronized. HVNet
is tightly integrated into pos, which is why pos is essential for this work.

For generating packets, we rely on the flexible packet generator MoonGen [22]. Moon-
Gen relies on DPDK for fast packet processing, which is capable of saturating a 10 GbE
link with minimum-sized packets using a single core. MoonGen’s flexibility originates
from using the scripting language Lua with a JIT compiler to configure the program.
Due to many examples provided, the learning curve is not steep. In addition to being
a packet generator, MoonGen can forward packets. We exclusively use these example
scripts for our experiments.
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3.2 Containers and performance evaluation

Watada et al. [6] conducted a comprehensive review of available research on container
technology. Their work compares containers and VMs with respect to isolation, security,
orchestration, and performance. Different container solutions use different isolation and
resource allocation mechanisms. In summary, this work serves as an entry point for
virtualization solutions and their enabling hard- and software features. Relevant for
our work is the comparison of key technologies between containers and VMs and the
performance comparison between container solutions and heavy-weight virtualization.
They find that all container implementations perform similarly, but outperform VMs in
many benchmarks.

Krishnakumar’s work [15] measures latencies for Docker containers that are attached
to SR-IOV VFs. Another host that generates packets with Pktgen is connected to the
PF. In addition, they conduct experiments with OpenVSwitch. One of their goals
is to develop a latency-sensitive scheduler for Kubernetes. In contrast to that, we
are evaluating the viability of containers in the context of low-latency networking and
focus on measuring and optimizing the latencies. Their latency measurements are only
accurate in hundreds of µs which is sufficient for their Kubernetes scheduler. The first
experiment, which assigns two VF from ingress and egress NIC to a Docker container,
measures 800 µs. Another experiment utilizes an OpenVSwitch and vhostuser ports
attached to one container; the same latency is measured. Our work does not look at
OpenVSwitch at all, and furthermore, we rely on previous work and infrastructure that
allows recording latencies in the range of ns.

A media gateway (MGW) plays a critical role in the 5G core network. By placing the
MGWs closer to the user, lower latencies can be achieved. Naturally, internet service
providers are looking for ways to minimize latencies for deployed network virtualized
functions. Chen et al. [23] develop a Docker-based media gateway, which adjusts the
Layer 3 and 4 information of each packet passing through. The work compares the
throughput and average latency of the kernel network stack with DPDK-based net-
working for both bare metal and Docker containers. In conclusion, for bare metal 49 µs
average latency is recorded, while for Docker the number is slightly higher at 69 µs. Since
their implementation of the MGW rewrites parts of the packets, which adds processing
delays, it is not directly comparable to our work.

The work of Mao et al. [24] compares the worst-case latencies of VMs, Docker containers,
and bare metal for a real-time kernel, a low-latency kernel, and a generic one. Measure-
ment is carried out with 500 000 cycles of Cyclictest, a network latency benchmarking
tool, and DPDK. Under system load, they find that Docker delivers near bare metal

14



3.3 Low-latency optimizations

latencies (32 µs vs. 30 µs) when using the real-time Linux kernel. The VM shows much
higher latencies with 23 614 µs. Without load, all kernels perform nearly identically with
latencies of around 10 µs for Docker and bare metal. VMs are again much worse with
latencies of more than 5300 µs. This indicates that we may expect lower latencies for
our container prototype as well.

Zhang et al. [25] conducts a comparison between containers, VMs, and bare metal
with the goal of evaluating the performance differences of SR-IOV and passthrough
for high-performance computing (HPC) applications. They find that containers with
passthrough outperform VMs for both passthrough and SR-IOV. Furthermore, they
find a 9 % overhead of containers with passthrough over bare metal. No studies have
been conducted with containers and SR-IOV. To fill this gap, our implementation
supports topology creation with SR-IOV links. However, collecting these measurements
is reserved for future work.

3.3 Low-latency optimizations

Related work indicates that containers might be competitive in low-latency networking.
Most of the research around low-latency virtual networking focuses on VMs and makes
numerous recommendations that we can reuse for our prototype. For example, the work
of Gallenmüller et al. [17] optimizes latencies and jitter. To do so, they showcase the
nohz kernel option and various kernel boot parameters, which isolate cores. Just as in
our work, they utilize SR-IOV for realistic latencies. In conclusion, their results suggest
that their optimizations deliver slightly lower and more stable latencies than a real-time
kernel. They identify the translation lookaside buffer (TLB) shootdowns as a possible
cause of tail latencies. We reuse their suggested low-latency optimizations and adjust
them as necessary for containers.

HVNet by Wiedner et al. [4] creates a framework for conducting reproducible networking
experiments on a single host. HVNet interfaces with pos to spawn virtual machines as
nodes, which are interconnected with SR-IOV for low latencies. For evaluation, they
collect latency data of 100 different topologies. The worst-case latencies are between
0.22 ms and 0.41 ms, which is an improvement compared to software solutions such as
Mininet. This thesis integrates containers on top of HVNet so that the tooling and
measurement scripts are reusable. In future work, a direct comparison between our
solution and HVNet will be possible.
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Chapter 4

Problem Analysis

This Chapter presents three problems related to virtual networking on a single host.
Section 4.1 explains the first challenge, which is the technology for interconnecting nodes.
For that, we discuss software network simulators, their solution to this problem, and why
they are insufficient. As an alternative, we discuss hardware features such as SR-IOV.
The second problem is introduced in Section 4.2: the choice of technology for virtual
nodes. There are reasons why containers might perform better than VMs. Finally,
Section 4.3 highlights possible sources of tail latencies, which should be considered to
ensure applicability in real-time systems. Based on this analysis, we derive requirements
for the prototype.

4.1 Virtual networking on a single host

There has been considerable interest in virtualizing network experiments on a single
host. Network experiments on real hardware are expensive to set up: Each node requires
a host with its own CPU, memory, mainboard, and one or more high-performance NICs.
For each experiment, the cabling must be adjusted, which requires physical presence
at the site. This approach is more prone to errors due to human interaction. We
analyze approaches that virtualize or simulate networking with the goal of delivering
low, reliable, and accurate latencies. Furthermore, the solution must be compatible
with containers.

4.1.1 Network simulators
Over the years, numerous network simulators have been presented. A few examples are
Mininet [26], ContainerNet [27], ns-3 [28], and Dockemu [29]:
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Mininet’s approach to virtualizing networking is lightweight: it creates process groups
that are interconnected with vEth-pairs in network namespaces [26]. Through a Python
interface, the user defines the topology and the scripts to run on each node. As demon-
strated by Wiedner et al. [4], this approach produces tail latencies much higher than
those of the alternatives and will not be considered.

Containernet is a Mininet fork that implements Docker containers as hosts [27]. Net-
working with vEth-pairs is inherited from Mininet. The work [30] shows that Docker
performs worse in terms of I/O, raw CPU power, and various benchmarks for Hadoop
and Spark compared to LXC. Additionally, Docker containers typically only bundle
libraries to run one application at a time, which reduces the adaptability. A better
comparison to a VM is a system container. As a consequence, we do not investigate
Docker or Containernet further.

ns-3 is a discrete event network simulator written in Python and C++. Topologies and
programs are defined in C++ scripts, which would require a rewrite of our measure-
ment tooling. Although Beifuß et al. [28] showed that after implementing their own
simulation model, latencies are simulated accurately except for edge cases, containers
are not supported. The implementation of containers would require restructuring of
the existing code and would not be trivial to do. In summary, ns-3 does not meet our
requirements.

Dockemu is software implemented on top of ns-3, which integrates Docker containers as
nodes into the simulation. The interconnection between the simulated node and Docker
is carried out in two hops with a tap interface and a Linux bridge with a vEth-pair [29].
Consequently, since vEth-pairs have shown to deliver unreliable latencies, this approach
might perform even worse due to another processing layer.

They all have different ways to simulate the network stack. Some of them factor in
latencies introduced by the kernel; most of them allow adding delays to links. However,
none of them let us integrate containers and, in addition to that, deliver accurate, low,
and stable latencies.

4.1.2 Virtualized networking with low latencies
An important problem concerning virtual networking experiments is the lack of realism
and stability due to reliance on software. Mininet [26] uses vEth pairs and network
namespaces. As demonstrated by Wiedner et al. [4], virtual machines with VFs offer
more stable and precise latencies compared to Mininet. The work presents a 618-fold
improvement in worst-case latencies for two hop flows and a 1063-fold improvement for
five hop flows. The higher the hop count, the higher the improvement, leading to the
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conclusion that Mininet scales poorly compared to VFs. Up to the 50th percentile in
measured latencies, Mininet demonstrates latencies lower than HVNet. The results in-
dicate that lightweight virtualization offers lower latencies when jitter and tail latencies
are not considered. Further optimizations are necessary to stabilize the latencies.

Another problem is scalability. For utilizing real hardware, there are two options:
passthrough and SR-IOV. With passthrough, the host transfers all control over a PCIe
device to a guest who receives exclusive control. Research by Zhang et al. [25] suggests
that passthrough is more performative for both containers and virtual machines. In
particular, the overhead for the passthrough with containers over the native bare metal
HPC benchmark is stated to be 9%. However, this approach is not scalable. A topology
with n nodes requires n NICs, which is expensive. Furthermore, for larger n (such as
n > 30), it is not feasible to connect so many individual NICs to a single host due to
the absence of PCIe lanes and general physical logistics. In addition to that, by passing
through one NIC for every virtual node, manual wiring is required to set up the links.
We rule out pass-through as an exclusive way to interconnect virtual nodes.

By introducing hardware features such as SR-IOV, some overhead and jitter are elim-
inated, which occur when packets are processed exclusively in software. Previous
work [4], [17], [25], [31] shows that the latencies introduced by SR-IOV are stable even
for high percentiles such as 99.999 (5 nines) and the overhead is acceptable. As a
consequence, SR-IOV is our first choice to achieve low-latency networking.

4.2 Containers as virtual nodes

For the realization of virtual nodes, two forms of virtualization come into question:
heavy-weight virtualization with VMs, and OS-level virtualization with containers. The
performance of VMs in the context of low-latency networking, optimization of hard and
software stacks, and reduction of tail latencies was investigated by [4], [8], [14], [17],
[25], [32]. In comparison, OS-level virtualization is not investigated as much, which is
a reason why this thesis investigates containers. Table 4.1 provides an overview of the
differences between VMs and containers and indicates the reasons why containers may
have lower (tail) latencies.

VMs offer a higher degree of isolation due to the operation of an own kernel. Increased
isolation comes with a trade-off in performance: Although there are modern hardware
features, such as VT-x or AMD-v, which enable efficient handling of privileged instruc-
tions by opening a trap to the hypervisor [3], heavy-weight virtualization still inflicts a
performance penalty. An interrupt is much more expensive to execute in a VM than on
bare metal due to multiple context switches between virtual machine monitor (VMM)
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VM Container
Kernel own shared with host
Paging expensive cheap

System call expensive cheap
Isolation strong lightweight with kernel-level features
Memory usually pre-allocated grows as needed

Hugepages supported must be created on host
Scheduler own by host
Start-up seconds-minutes milliseconds

Table 4.1: Comparison between VMs and containers

and VM [33]. Furthermore, the raw CPU compute performance is negatively affected.
Ramalho et al. [34] measure 4.27 % worse memory performance for kernel-based virtual
machine (KVM) VMs with NBench, 2.88 % worse integer performance and 1.44 % worse
floating point performance. The same study finds that Docker containers for all NBench
benchmarks are close to bare metal; in the worst case, Docker is 0.8 % worse than bare
metal. In other benchmarks, containers consistently outperform KVM. Research by Li
et al. [32] shows that the performance of VMs is inferior to that of containers for commu-
nication data throughput, computation latency, memory data throughput, and storage
data throughput. In summary, related work demonstrates how containers achieve bet-
ter synthetic benchmarks, which might translate into lower latencies because of more
available computing power.

4.3 Factors influencing latencies

One reason for latencies is interrupts [1], [20], [35]. There are two types of interrupts:
hardware interrupts, caused by physical I/O devices, and software interrupts, used for
system calls [3]. The interrupt controller handles interrupt requests based on a priority.
When it is time for an interrupt request, the controller issues an interrupt with the
CPU. The CPU then stops working through the instructions and jumps to the interrupt
handler, which defines the code that is executed due to the interrupt. Upon completion,
the CPU returns to the location where it was interrupted and continues there.

Any interrupt of a CPU core engaged with packet processing will cause disturbance and
induce unwanted delays. Therefore, our objective is to minimize interrupts by following
the recommendations of Gallenmüller et al. [17] and Akkan et al. [35]. The suggestions
of Gallenmüller et al. include kernel parameters to disable virtual cores, disable power
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saving options, disable scheduling interrupts with the nohz kernel option, and various
other configurations that affect latencies.

Gallenmüller et al. concluded that their tweaked nohz kernel provides better tail laten-
cies than the real-time kernel. However, they test in a highly optimized environment.
Since we introduce LXC containers that are built on different kernel and virtualization
features, we consider both kernels nohz and real-time in our research.

Another factor is NUMA awareness. A PCI device is connected to a NUMA node. When
memory or CPU cores from different nodes are used, data need to traverse NUMA nodes,
which introduces latencies. Emmerich et al. [21] denote the added latency as 1.7 µs.
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Chapter 5

Implementation

The practical implementation of this thesis uses HVNet [4] as a framework. In summary,
we replace virtual machines in HVNet with containers, execute commands that require
kernel interaction on the hypervisor instead of in the containers, and then run modified
experiment scripts for measurements. The finished implementation can be found on
GitLab [36]; branch impl-lxc-container.

Initially explained in Section 5.1 is the selection process for an implementation of LXC
and basic interaction with containers. In Section 5.2 we integrate them into pos [16].
We mimic the VF setup of HVNet for containers; Section 5.3 presents the necessary
configuration of a NIC for SR-IOV. Since it is not possible to initialize all resources for
the usage of DPDK applications in a container, Section 5.4 structures the initialization
into two steps: First, in Section 5.4.1, we execute commands that must run on the host.
Second, in Section 5.4.2 we set up the container. Various options and optimizations for
host and guests are highlighted in Section 5.5. Finally, we describe in Section 5.6 the
integration process of our work in HVnet. Due to time and scope constraints, we are
unable to port all features of HVNet to containers. Section 5.7 reviews features that
are not tested or implemented.

5.1 Linux Containers

Linux Container (LXC) is a lightweight implementation for containers sponsored by
Canonical. For isolation, LXC utilizes different kernel features, where the most impor-
tant are CGroups and namespaces. LXC consists of userspace management programs,
language bindings, and container templates.
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Listing 5.1: Installation of the LXC userspace tools and utilities
1 $ apt -get -y install lxc debootstrap python3 -lxc

Initially, we create container scripts with LXD. LXD is a wrapper around LXC, which
adds a number of convenience and data center features [5]. However, after working with
LXD, we decide to implement only LXC containers without the LXD wrapper. The
reasons are that LXD adds complexity during setup and maintenance, and this thesis
project does not require any of the additional features. Implementing LXD would add
yet another layer of abstraction that could possibly fail, while providing almost no
benefit to this thesis.

Since HVNet uses libvirt to manage virtual machines, we investigate the possibility of
interacting with libvirt to orchestrate containers. This approach would make parts of
the existing codebase reusable. For this purpose, RedHat offers the library libvirt-lxc.
However, we cannot create containers with this bridge. The reason for this could be
that the project was discontinued in 2015 [37] and was not tested with modern Linux
distributions. After investigating the options mentioned above, we decided to use the
LXC userspace tools and the related Python library.

5.1.1 Installation
Listing 5.1 shows the installation of LXC on Debian-based systems and the required
dependencies. The lxc package installs the LXC userspace tools and three background
services [38]:

1. lxc-auto: autostarts containers on boot

2. lxc-net: configures the lxcbr0 bridge interface (default option)

3. lxc: initializes the AppArmor profiles for unprivileged containers

The next package debootstrap bootstraps a Debian operating system that includes all
libraries and binaries into a folder [39]. It is impossible to boot a container from an iso
image file; therefore, the LXC userspace tools rely on debootstrap to create the root file
system.

For the management of containers in code, there is the Python library python3-lxc. After
carefully testing the library, we found it too unstable to use it for some tasks. First,
container creation seemingly fails without pattern and without any error. Second, the
command, which is supposed to add CGroup values to the configuration file, apparently
ignores some CGroup version 2 values. Therefore, we write a wrapper class in which
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Listing 5.2: Listing all installed containers and stats on the host
1 $ lxc -ls -f
2 NAME STATE AUTOSTART GROUPS IPV4 IPV6 UNPRIVILEGED
3 cnt -deb -00 RUNNING 0 - 172.16.142.2 - false
4 cnt -deb -01 RUNNING 0 - 172.16.142.3 - false

faulty commands are replaced by calls to the userspace tools or written in the container
configuration file. Regardless of the faulty commands, we still utilize some working
parts of the library because not reimplementing the entire library lowers the complexity
of our code.

For this thesis, we are exclusively working with privileged containers. Unprivileged
containers require more configuration (for example, AppArmor and user elevations [38])
but do not change the result of the experiments. Hence, we disable AppArmor on boot
with the kernel parameter apparmor=0. AppArmor may be terminated during a running
session with the command aa-teardown.

Upon creation of a new Debian system container with lxc-create -n name -t debian
a configuration file is generated in /var/lib/lxc/. The container starts with lxc-start
-n name. Stopping works analogously. The command to attach a shell to a running
container is lxc-attach -n name. Listing 5.2 demonstrates the command to list the
installed containers.

Using the aforementioned information, we create scripts that automatically install the
dependencies, create containers upon request, and mirror the installed software and
system settings of virtual machines. These scripts will be extended in the next chapters
and finally integrated into HVNet.

5.1.2 Images for LXC: distrobuilder
Images of hosts and virtual machines, which power experiments with pos [16] are pre-
configured with software and system settings. However, containers rely on different
technologies, making it impossible to load images meant for physical hosts. As a con-
sequence, we write a script that configures containers in the same way that images are
set up for pos. This includes installing commonly used build tools and software, various
network-related packages, configuring timezones, networking, secure shell (SSH) keys,
and the SSH server. The containers are then in almost the same state virtual machines
are in after booting.

Similarly, it is possible to create images for LXC. The LXC ecosystem offers dis-
trobuilder, a program to create LXC and LXD images. One way to use distrobuilder is
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Listing 5.3: Creating a container from an image
1 $ lxc -create -n cnt -deb -02 -t local -- --metadata /path/to/image/meta.tar.xz --

fstree /path/to/image/rootfs.tar.xz

to first create a container, install the desired software on it, and then snapshot the state
of the container as an image. Subsequently, we design a small wrapper script around
distrobuilder. This script creates a Debian Bullseye container, installs the script previ-
ously drafted with pos defaults, and another user-defined script before finally packing the
image. Distrobuilder outputs two compressed files: meta.tar.xz and rootfs.tar.xz.
The meta file contains metadata and context information to correctly restore the image.
The rootfs file contains the entire root filesystem, including all libraries and installed
applications. Both files are mandatory to restore an image: Listing 5.3 shows how to
create a container from an image.

As a result, we develop an easy way to image arbitrary software into LXC containers
by providing an installation script.

5.2 Integration with pos

For reproducible experiments, we integrate LXC containers in pos. pos already supports
creating and managing virtual machines. To simplify the setup, a container will pretend
to be a virtual machine from the perspective of pos. Hence, containers will be named
$(hostname)-vmX. Not all features of pos can be used with containers: boot parameters
and requesting a boot image cannot be supported due to the way containers work. In
Section 5.2.1 we configure the management network so that containers can be reached by
SSH. Section 5.2.2 explains the necessary steps that allow pos to control the containers
with commands, such as power-on, shutdown, and restart.

5.2.1 Management network setup
The management network’s only purpose is to provide remote access to a container. It
is not optimized for performance in any way. We set up a host-shared bridge that allows
guests to interact with the network as if they were directly attached to it, without the
container host in between.

We utilize a Linux bridge with the host management interface as master [40]; commonly
referred to as a host-shared bridge. The bridge receives the same MAC address as the
master interface. This bridge replaces the management interface that grants access to
the host. Systemd-networkd handles DHCP for recent versions of Debian; hence, we

26



5.2 Integration with pos

instruct it to request a DHCP lease for the newly created bridge interface. The bridge
receives the same lease as the master, since the MAC address is the same. Finally,
the IP address of the former management interface is deleted. The containers are then
connected to the bridge with a vEth pair. All packets belonging, for example, to an
SSH session now travel via the newly created bridge.

By default, LXC creates the masquerading or network address translation (NAT) bridge
lxcbr0. This bridge assigns IP addresses from an internal subnet and forwards packets to
clients [40]. Consequently, guests do not have unrestricted access to the host network,
and the only way to reach containers is by forwarding ports. This implies that the
containers will not be visible to pos. Since we are not using this interface, we are
deleting it.

Figure 5.1: Overview of a host-shared bridge and special MAC addresses for containers

Each vEth interface inside a container must receive a special MAC address, so that
pos [16] recognizes the container. The MAC address must match the following format
with two parameters 52:54:00:{hex}:00:{num}: hex is the third octet of the IP ad-
dress of the host that can be queried with hostname -I and num is the number of the
VM or container starting from two. Figure 5.1 demonstrates how the MAC addresses
are set and which IP addresses each container finally receives. The MAC addresses
52:54:00:8e:00:0x where x is the container number plus two are assigned to con-
tainers. The third octet of the host IP address 172.16.142.1 is 142 in base10, which
translates into 8E in base8. When the container requests an IPv4 address with DHCP,
pos assigns the next highest IPv4 address: If the host has the IP address 172.16.142.1,
the first container receives 172.16.142.2, the second one 172.16.142.3 and so on.
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Listing 5.4: Example override of the vBMC function for turning on a container
1 def power_on(self):
2 container = lxc.Container(self.domain_name)
3 if container.defined:
4 if not container.running:
5 container.start()

Listing 5.5: Registering a container with vBMC
1 $ vbmc add --username ADMIN --password blockchain --port 6001 container01
2 $ vbmc start container01

5.2.2 Control with vBMC
pos [16] controls nodes with IPMI commands. IPMI is a set of specifications that
controls hosts out-of-band and is commonly implemented in the baseboard management
controller (BMC). This means that even when not powered on, a user or program
has the ability to take control of the device [41]. While this solution is adequate for
hardware hosts, it is impractical for VMs: the BMC does not provide a way of targeting
VMs running on top of a physical host. OpenStack’s virtual baseboard management
controller (vBMC) solves this problem. The vBMC is a lightweight simulation of a
BMC in software, which interfaces with libvirt to forward IPMI commands to VMs.

At the time of writing this thesis, there is no comparable tool for interaction with LXC
containers. Consequently, we rewrite Openstack’s virtual BMC to forward the IPMI
calls to LXC via the Python API and userspace tools instead of libvirt. The vBMC
includes a wrapper class that implements methods such as power_on, power_shutdown,
get_power_state. The Listing 5.4 demonstrates our override for the power_on function
exemplarily. The other methods are implemented similarly.

Before installing the modified version of vBMC on the container host, we clone the
repository and install its dependencies with pip. The project is built with an included
Python script. Finally, we start the vBMC daemon, which forwards IPMI commands
to the addressed container. Listing 5.5 demonstrates the registration procedure for an
example container with the name container01 and port 6001. After the registration,
pos is able to control the container with IPMI.
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Listing 5.6: Creating 8 VF on the interface eth0
1 $ echo 8 > /sys/class/net/eth0/device/sriov_numvfs;
2 $ sleep 5;

5.3 NIC configuration for SR-IOV

NICs, which are interconnected with a cable, must be configured specifically so that the
packets travel back and forth between the two NICs. For that, we reuse the HVNet
setup [4].

Listing 5.6 shows exemplarily how to create 8 VFs on the device eth0. Afterwards, a
magic sleep is required, else the further configuration of the VFs fails.

Next, we allow unicast full promiscuous mode for VFs in the physical function, so that
each VF has the ability to activate the option to read all ingress traffic [42], even traffic
that is not addressed to the VF. Unicast full promiscuous mode for VFs requires a
special NIC, such as an Intel X700 [4]. Furthermore, we set the VFs as trusted, which
allows them to request promiscuous mode. We disable spoof checks, so that the VF
does not discard packets with spoofed addresses. Since we rely exclusively on IPv4, we
disable IPv6 for each VF. Finally, in Listing 5.7 we assign the VLAN ID 401 to the
fourth VF of the interface eth0.

Listing 5.7: Setup VLAN 401 for the fourth VF of the interface eth0
1 $ ip link set eth0 vf 3 vlan 401;

5.4 DPDK in containers

In some of our experiments we rely on a layer 2 packet forwarder from the libmoon [22]
packet generator. libmoon runs on top of DPDK, another library for fast packet pro-
cessing. Running DPDK applications in a container requires a special setup, since it is
not possible to load kernel modules or to create hugepages in a container. In summary,
we prepare all kernel-dependent interactions on the container host and pass through
the initialized resources to the container. We then rewrite the libmoon scripts to skip
resource initialization in the container.

5.4.1 Host preparation
We derive the next steps from Krishnamurthy’s guide published in the DPDK mailing
list [43] to run DPDK in LXC containers. In the script prepare_host_forwarder.sh,
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Listing 5.8: Binding a network interface card to the igb_uio driver
1 $ modprobe uio
2 $ insmod igb_uio.ko
3 $ python dpdk -devbind.py --bind=igb_uio "$DEVICE"

Listing 5.9: Major and minor IDs for device files
1 $ ls -la /dev/uio*
2 crw ------- 1 root root 242, 0 Jul 8 14:01 /dev/uio0
3 crw ------- 1 root root 242, 1 Jul 8 14:01 /dev/uio1

we gather all steps. Furthermore, container-related configuration is added to the script
prepare_container_host.py.

First, the NIC, which will be used in DPDK, must be bound to the igb_uio driver. This
driver is supplied by the DPDK framework and is compiled with make. Since igb_uio
is built on top of the uio kernel module, uio has to be loaded. Listing 5.8 demonstrates
the process of binding interfaces to igb_uio with the help of dpdk-devbind, a script
supplied by DPDK. To bind a VF to the driver supported by DPDK, it is important to
install the IAVF driver [44]. Otherwise, it is not possible to correctly interact with VF.

Second, DPDK requires preallocated hugepages. The libmoon library supplies a script
to initialize 512 hugepages of 2048 kB on all NUMA nodes. In case multiple containers
are running DPDK applications like libmoon and have cores from the same NUMA node
assigned, the amount of allocated hugepages in the libmoon initialization script has to
be adjusted.

At that point, the host is set up. Next, we pass through the initialized resources to
a container. By binding the network interfaces to igb_uio, device files in /dev/uioX
are created. These device files are assigned with CGroups to a container. For that, the
major and minor ID of the devices must be known. Listing 5.9 reveals the major ID
242 and the minor ID 0 respectively for the two created device files.

In addition, the device nodes must be mounted or created in the container. There are
two options for doing so: during runtime with the mknode command or by mounting
the device file. We opt for the second option. The hugepages are mounted in the same
way. Since binding to igb_uio creates files in /sys which are necessary to interact with
the NICs, additional options are required according to Stéphane Graber in a Github
issue [45]. With the LXC configuration shown in Listing 5.10, DPDK is capable of
taking control of NIC within a container. The host setup is now complete. Next, we
configure the containers to utilize the resources passed through.
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Listing 5.10: LXC configuration file content for passing through device files
1 lxc.mount.auto =
2 lxc.mount.auto = proc:rw sys:rw
3 lxc.cgroup2.devices.allow = c 242:0 rwm
4 lxc.mount.entry = /dev/uio0 dev/uio0 none bind ,create=file
5 lxc.mount.entry = /dev/hugepages dev/hugepages none bind ,create=dir 0 0

5.4.2 Container preparation
Running libmoon inside a container requires some adjustments. By default, libmoon
assumes to run on a bare metal or virtual machine. We have to make two adjustments
to the build.sh script, which compiles libmoon and its dependencies and sets up the
host:

1. Exclude the call to the bind-interfaces.sh script, which binds the network
interfaces to the igb_uio driver. This step is not necessary since the passed-
through device files are already available.

2. Exclude the compilation and loading of the igb_uio kernel module, which is not
possible inside a container.

After compilation, libmoon is almost ready for experiments. One issue requires modifi-
cation of libmoon: HVNet [4] assigns CPU cores to containers with NUMA awareness.
However, the ingress and egress NICs are connected to different NUMA nodes, which
causes libmoon to throw an error and terminate immediately. We develop a workaround
for this issue: a new configuration option called forceNumaNode that overrides the in-
ternal check regarding NUMA optimality in libmoon.

Finally, we configure the DPDK library used in libmoon to match our requirements.
Libmoon is configurable through the file dpdk-conf.lua where the arguments are passed
to libmoon and DPDK. We configure four options:

forceNumaNode: Our added option; skips the NUMA assignment and verification
process, and forces a specific NUMA node.

cores: This option assigns specific cores for packet processing. A single forwarder
receives three CPU cores: one for OS services, handling interrupts, and other processes
unrelated to packet processing, and two for processing the transmitting and receiving
of packets.

–socket-mem: By default, libmoon will allocate all available hugepages [46]. This be-
havior makes running multiple forwarders impossible since there are no more hugepages
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for the second forwarder available. With the option –socket-mem it is possible to define
how many 2048 kB hugepages should be allocated to this instance of DPDK for each
NUMA node.

–file-prefix: Two or more containers would interfere with the hugepages of each other
despite the limit set with –socket-mem [46]. The option –file-prefix assigns a prefix
to the allocated memory to avoid conflicts.

5.5 Optimizations

We apply a number of optimizations that improve performance and minimize interrupts
on packet processing cores. Section 5.5.1 introduces our CGroup configuration, which
affects the allocation of hardware resources to containers. In Section 5.5.2 we optimize
containers to exclude processing cores from housekeeping tasks. Finally, Section 5.5.3
describes the optimizations applied to the host.

5.5.1 CGroup setup
Hardware resources are restricted for each container with CGroups. HVNet returns a
blueprint that assigns cores and memory, including the NUMA socket, to each container.
We assign the resources according to the blueprint. For that, we utilize specific CGroup
options:

cpuset.cpus: The value is a comma-separated list or a range of core numbers. Each of
the cores is assigned to all processes that inherit this CGroup option [47]. This option
alone does not restrict the parent to schedule processes on the assigned cores.

cpuset.cpus.partition = ’root’: The cpuset subsystem of CGroups offers another op-
tion, partitions, which offers a native solution to the problem of depriving CPU cores
from other CGroups [47]. A partition acts as its own tree. The resources assigned to the
subtree are only present in this subtree, but not in the parent. For example, a LXC con-
tainer with the options cpuset.cpus.partition = ’root’ and cpuset.cpus = 3-5 is
granted exclusive access to the cores 3-5, because the parent CGroup node is deprived
of the cores 3-5. This can be verified by checking the value of cpuset.cpus.effective.

cpuset.mems: This option limits from which NUMA nodes memory can be assigned to
processes. We exclude this option for experiments where we face the problem described
in Section 5.4.2: libmoon requests memory from a different NUMA node than the
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Listing 5.11: Configuring housekeeping tasks of a container to run only on the first CPU core
1 $ systemctl set -property user.slice AllowedCPUs =7;
2 $ systemctl set -property system.slice AllowedCPUs =7;
3 $ systemctl set -property init.scope AllowedCPUs =7;

Listing 5.12: Configuring a new slice with access to all CPUs for DPDK
1 $ cat <<EOF > /etc/systemd/system/libmoon.slice
2 [Slice]
3 AllowedCPUs =7-9
4 EOF
5 $ systemctl daemon -reload
6 $ systemd -run --slice=libmoon.slice echo "Hello␣Slice"

one from which it has cores assigned. This requires us to overwrite the NUMA node
assignment in libmoon.

memory.max: Hard limit of the maximum assignable memory in bytes. If more mem-
ory is requested, the processes in the group are terminated by the out-of-memory
killer [47]. Containers do not pre-allocate memory; instead, they only request mem-
ory when needed, leading to more efficient resource utilization.

5.5.2 Container optimization
A container runs its own instance of systemd. Systemd again creates slices and has
scope units, which are permitted to use any core which is assigned to the container.
We restrict this behavior so that these services only run on the first CPU core that is
not involved in the packet processing. Assuming that the container is assigned CPU
cores 7-9, we restrict systemd services to only use core 7 as demonstrated in Listing
5.11. Furthermore, there are certain processes of pos [16] that run in the user.slice.
To eliminate potential context switches and interrupts, we restrict the cores assigned to
this slice.

Since we restricted the user.slice to one core, it is no longer possible to run the for-
warder. Instead, a new slice is created that has access to all cores. The Listing 5.12 cre-
ates a new slice called libmoon.slice, reloads the system daemon so that systemd cre-
ates the slice, and finally, we run an example program in this slice. Another unsuccessful
approach is to assign the two processing cores 8 and 9 and cpuset.cpus.partition
= ’root’ to the libmoon.slice, which deprives the container of the aforementioned
cores. However, a DPDK application requires another thread to handle occasional in-
terrupts for link updates of the poll-mode driver [48]. When assigning only two cores,
this thread cannot be scheduled and DPDK fails to start.
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Listing 5.13: Kernel parameters of the container host
1 $ cat /proc/cmdline
2 mce=ignore_ce tsc=reliable idle=poll nohz=on audit =0 amd_iommu=off nosmt console=

ttyS0 ,115200 apparmor =0 nohz_full =8,9,10,24,25,26 rcu_nocbs =8,9,10,24,25,26
kew_tick =1 irqaffinity =0 intel_pstate=disable nmi_watchdog =0 nosoftlockup
rcu_nocb_poll random.trust_cpu=on intel_idle.max_cstate =0

5.5.3 Host optimizations
The kernel parameters are used to configure the operating system for specific tasks. We
reuse the propositions of related work [4], [17], [35]: These kernel parameters reduce
the amount of timer activity on the cores, block read-copy update (RCU) from the
processing cores, and disable power saving features that might affect performance, such
as cstates or pstates. After integrating the parameters into the project, we present our
configuration in Listing 5.13.

Some minor adjustments are necessary compared to the propositions of related work.
The IOMMU must be disabled for containers, since it is incompatible with our driver
stack. In addition to that, we do not require the IOMMU. Furthermore, the option
isolcpus is excluded, as it interferes with the CGroup cpuset subsystem.

5.6 Integration with HVNet

Here we present details of the integration of containers in HVNet. This includes new
program parameters, new configuration parameters, boot parameters, and finally con-
tainer creation.

5.6.1 Program parameters
The parameters change the behavior of HVNet. When executing the Python setup.py
script, parameters may be defined. We add more parameters to enable a more fine-
grained control of LXC.

-lxc or –enable-lxc: Use LXC instead of VMs. Adjustments of the setup scripts might
be necessary. Not all the functionality of HVNet has been tested. Enabling this option
switches the VM setup scripts in setup.py to the container ones.

-lxc-di or –lxc-disable-isolation: Indicates whether our implemented host and con-
tainer optimizations should be applied. This option can be used to test performance
by letting LXC handle core assignments, the impact of NUMA awareness, and our core
pinning and isolation mechanisms.
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5.6.2 Configuration parameters
Initially, we added more options to the HVNet configuration. With this json-formatted
configuration file, the user defines a topology, the scripts to run on each node, and the
experiment setup. To integrate the previous work more efficiently, we add an option
to define a script lxc_host_setup that runs on the container host. Every node may
define its own host setup script, so that each node can add more hugepages, or various
other changes it needs to be executed on the host. For the DPDK forwarder nodes, we
may use the script prepare_host_forwarder.sh prepared previously.

With the second new option, the user can define the path to a LXC image. The path
must be accessible from the host that executes HVNet and point to a folder containing
the two files meta.tar.xz and rootfs.tar.xz, which define a LXC container. HVNet
copies the folder with rsync to the container host, where the containers are instantiated
with the images. Based on the json configuration file, HVNet derives a configuration
object that provides detailed information about the topology and the host, including
the NUMA-aware assignment of memory and CPU cores.

The program parameters are defined in the configuration object used internally in
HVNet. For example, the variable lxc tells whether LXC is enabled or not. Further-
more, the Boolean variable lxc_disable_isolation indicates whether our isolation
mechanisms should be omitted.

5.6.3 Boot parameters
We adjust the HVNet boot parameters. The IOMMU must be disabled. On the one
hand, we do not have VMs which would require the IOMMU, and on the other hand,
the creation of VFs fails with our setup when the IOMMU is enabled. Next, we disable
CPU core isolation with the parameter isolcpus. According to [49], isolcpus are
deprecated and instead the cpuset subsystem for CGroups should be used - just like we
do.

5.6.4 Container creation
To match the setup of VMs in HVNet, we create two scripts: one to install all depen-
dencies related to LXC and one to create the actual containers and VFs. With the
program parameter -lxc we instruct the setup.py script to exchange the VM files for
the corresponding container files.

The prepare_dependencies.sh script has the following purposes:

• Binding RCU tasks to the first CPU core. This will prevent the kernel from
executing an RCU task on one of the cores assigned to a container.
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• Updating the package database and installing the required packages.

• Installing NIC drivers: i40e version 2.17.15 and ice 1.7.16.

• Installing our modified version of the virtual BMC and running the daemon.

The prepare_container_host.py script sets up containers and all other related op-
timizations while respecting the values provided by the HVNet configuration object:

• Creating the management interface

• If necessary, creating VFs and setting them up accordingly

• Creating containers. Passing through the VFs and NIC device files. Applying
optimizations to the container. If no image is provided, copies over SSH keys and
executes the prepare_container.sh script, which installs the expected defaults
by pos. Finally, registering the container with vBMC.

After these two scripts are executed, the container topology is set up and wired according
to the configuration. Next, the setup scripts are executed, and finally the experiment
is starting.

5.7 Limitations

Not all functionality of HVNet is implemented and tested, since many of the existing
scripts require adaptation to be used in a container. A list of features that do not work:

• Node type switch - the OpenVSwitch scripts require adaptation since they load
kernel modules. We started the adaptation of the setup scripts for containers, but
even after extracting the loading of the kernel module, the program would crash.

• Link type virtual - with VMs, the vEth-pair is wrapped in the VirtIO driver,
which virtualizes a PCIe device and therefore can be bound to DPDK. With LXC
the interface is assigned to a namespace. It is impossible to bind it to the DPDK
compatible device driver, since the container is aware that it is not a fully featured
PCI function.

• atsbpr configs: untested

We have shown that it is possible to run low-latency networking software such as DPDK
in a container and integrate LXC into the testbed infrastructure with pos. Containers
are viable for low-latency networking from the perspective of tooling, which answers the
first part of RQ1. The second part and the remaining research questions are analyzed
by taking measurements in the next Chapter.
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Evaluation

This Chapter describes all measurements conducted within the scope of this thesis. Dif-
ferent configurations, kernel parameters, and CGroup options are tested for their impact
on latency. In Section 6.1 we present our testbed and measurement methodology, so
that our experiments can be reproduced. Our measurements, evaluation and compari-
son with related work are conducted in Section 6.2. For our measurements, we utilize a
setup with a single container or VM, which forwards packets. Although we tested the
implementation of SR-IOV for larger topologies involving multiple containers, we could
not compare the results with VMs. The driver for VFs is malefunctioning in a VM and
causes frequent crashes, so it is not possible to take measurements.

6.1 Setup

For all experiments, we utilized three hardware hosts. Containers are created on the
DuT, the LoadGen generates packets with MoonGen [22] and the Timestamper utilizes
the MoonSniff framework to track the latencies for every packet.

LoadGen DuT

Timestamper

▶
◀

▶
◀

▲ ▲

Figure 6.1: Experiment setup

The LoadGen is equipped with two Intel 82599ES 10 GbE, each connected to an Intel
X710 10 GbE NIC on the DuT. Figure 6.1 visualizes the setup: The container network
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Host CPU Memory NIC
DuT AMD EPYC 7551P 128 GB 2x Intel X710 10 GbE

LoadGen Intel Xeon Silver 4116 192 GB 2x Intel 82599ES 10 GbE
Timestamper AMD EPYC 7542 512 GB 2x Intel E810-C 25 GbE

Table 6.1: Hardware specifications of the testbed

on the DuT forwards packets from one interface to another so that it effectively creates
a loop. MoonGen generates UDP packets on the LoadGen and sends them through its
egress NIC to the ingress of the DuT. There they traverse a network of containers until
the egress is reached, which is again linked back to the LoadGen. The Timestamper
is attached to the connections between LoadGen and DuT with optical splitters. An
optical splitter taps into the connection so that the Timestamper receives all packets
that are exchanged. No latency is added, except for the propagation delay of the
fiber cable, which is accounted for [17]. The Timestamper measures the latency for a
packet by subtracting the measured timestamps of the two packets with the same unique
identifier. Consequently, the Timestamper creates pcap files which are evaluated with
another set of scripts by HVNet. By using commodity hardware such as the Intel
82599ES to timestamp packets at the LoadGen, only 1 kpkt/s can be timestamped. As
a consequence, we can analyze tail latencies more effectively with optical splitters.

All experiments are carried out with a minimum packet size of 64 B. This translates into
1.52 Mpkt/s for approximately 1 Gbit/s with framing and 6.24 Mpkt/s for approximately
4.4 Gbit/s. The LoadGen cannot generate more than approximately 6.24 Mpkt/s at the
smallest packet size [22].

For our experiments, we tested various OS versions. HVNet and other related work
were tested with Debian Buster, which is why we included it in our tests. In contrast
to that, our implementation is based on Bullseye. It was not possible to backport
our work to Buster due to the default version of CGroups being version 1, and the
package of LXC differing by a major version. As far as possible, we test with Buster
and Bullseye on the DuT. The LoadGen always operates with Debian Buster, Linux
kernel 4.19. For the forwarder, which runs in a container on the DuT, we use different
versions of libmoon. Related work was tested with the original version [50] of libmoon,
commit 2dbbcd9, which is why we also use this version for our tests with Debian Buster.
Unfortunately, this version of libmoon does not compile on Bullseye, which is why we
use a modernized version of libmoon [51] from the branch dpdk-20.08 on Bullseye. For
all experiments on Bullseye, the commit f2a859e is checked out, except for the LXC
experiments, where we require our NUMA patch, which is built on top of the commit
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a6525dd of the mentioned branch. For the LXC experiments, we created an image with
libmoon preinstalled. More figures for every conducted experiment can be found in the
result repository [52].

6.2 Base experiment

The topology of the base experiment is simple: The ingress and egress NICs are passed
through to a container or VM that forwards packets between the interfaces with the
libmoon l2fwd script. Libmoon is the library underneath MoonGen that provides most
of the logic. This experiment establishes a baseline using a single container without
added complexity, so that other possible factors that influence the measurements are
eliminated. Subsequently, we formulate recommendations for low-latency networking
with containers.

6.2.1 Kernel with nohz patch
This experiment used a nohz enabled kernel according to the recommendation of related
work [17]. We compare five different setups: VM with Debian Buster and Bullseye,
bare metal (physical) with Buster and Bullseye, and LXC with Bullseye. The results
are organized as follows: the results for 1.52 Mpkt/s are presented in Figure 6.2, and for
6.24 Mpkt/s in Figure 6.3. Both Figures are high dynamic range (HDR) diagrams with
two logarithmic axes. For each percentile on the x-axis, the graph shows the recorded
latency in µs. For example, in Figure 6.2, the 99th percentile for Buster experiments are
roughly at 5 µs, which means that 99 % of the recorded latencies are lower than 5 µs.
The x-axis starts within the single-digit µs range and increases up to 1000 µs. The HDR
plot highlights the tail latencies better than regular plots, where the outliers are barely
visible.
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Figure 6.2: Results of the base experiment with 1.52 Mpkt/s and nohz kernel
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Figure 6.3: Results of the base experiment with 6.24 Mpkt/s and nohz kernel

Depending on the packet rate, we observe a sharp increase in latencies in the 99.9th

percentile. Gallenmüller et al. [17] assume that it is caused by the measurement appli-
cation; however, they did not investigate further. For higher packet rates, this sharp
increase moves further to the left of the graph. The early increase in latencies at the
99.9th percentile in Figure 6.2 for the bare metal Buster experiment is most likely not a
consistent phenomenon due to the shape of the other measurements. We did not repeat
this experiment for a cleaner data set.

The small variance in the results until the 99.9th percentile is explained by measurement
inaccuracies. However, the trend that bare metal performs worse than both virtualiza-
tion technologies in the 6.24 Mpkt/s experiment was persistent. Gallenmüller et al. [17]
reported similar behavior for higher packet rates. Although they only measured up
to 120 kpkt/s, the tendency for VMs to perform better was observed for higher packet
rates.

It is also remarkable that we observe a difference in latencies between Debian Buster
and Bullseye. The difference in the experiment with 1.52 Mpkt/s is 1.4 µs for the 99th

percentile and remains roughly the same for other percentiles until the sharp increase
occurs - independent of virtualization. We could not identify a reason for this observa-
tion. In the experiment with a higher packet rate of 6.24 Mpkt/s there was no difference
measured outside the margin of error. Based on our collected data, we expect that LXC
on Buster performs better than our Bullseye implementation.

To further analyze the difference between Buster and Bullseye, Figure 6.4 shows the
5000 worst-case latencies for a VM on Buster, Bullseye, as well as LXC. The latencies
of LXC are in line with the results of a VM on Bullseye. There is no significant difference
in the distribution of latencies: for both, the majority of the worst-case latencies are
around 80 µs; we then observe a small gap where no latencies are recorded. Finally,
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a few outliers are again recorded. This behavior was also shown by Gallenmüller et
al. [17]. Surprisingly, we did not record this behavior for Buster, although Gallenmüller
et al. tested with Buster.
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Figure 6.4: 5000 worst-case latencies for the base experiment with nohz kernel

We identify an issue in our setup that introduces latency. The ingress NIC is connected
to NUMA node 1, the egress NIC to NUMA node 3; we assign CPU cores from node
3 and memory from node 3. According to Emmerich et al. [21], this setup adds 1.7 µs
latency due to crossing NUMA boundaries. A more optimal scenario requires CPU cores
from node 1. However, this would require further modification of the libmoon forwarder,
which we reserve for future work. In Figure 6.2, we measured 5.3 µs for the 99.9th

percentile with Buster. Compared to that, Gallenmüller et al. [17] measured roughly
3.3 µs at a much lower packet rate for the same percentile. Consequently, unnecessary
NUMA crossings could be an explanation for the observed difference compared to related
work.

All things considered, we answer RQ1 positively. Containers are viable for low-latency
experiments. To answer RQ2, we showed that containers perform identically, within the
margin of error compared to VMs when using the same OS and kernel. Cross-comparing
Debian Buster and Bullseye reveals a difference of 1.4 µs. However, this difference is
agnostic to virtualization and likewise measurable for bare metal.

6.2.2 Low packet rates
While experiments with high packets per second are more useful for observing hard
and software bottlenecks, we still test lower packet rates. By lowering the data rate
to 0.01 Mpkt/s, we observe worse latencies than in previous experiments with higher
packet rates. Figure 6.5 shows the latencies with LXC and the libmoon forwarder for
0.01 Mpkt/s, 0.06 Mpkt/s, 0.12 Mpkt/s, and 1.52 Mpkt/s, which resembles the packet
rates of related work [17]. It is remarkable that with increasing packet rates, the latencies
improve. The latencies for the lower rates are independent of virtualization or OS. We
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measured nearly identical latencies for the lower packet rates on Buster and Bullseye,
and on containers and VMs.
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Figure 6.5: Low packet rates demonstrate worse latencies than higher ones

To further pin down the problem, we repeat the experiment with a different layer 2
forwarder. For that, we install DPDK version 22.11 and run the integrated example
program dpdk-l2fwd on Debian Bullseye. However, the observed latencies did not im-
prove. We conclude that this problem is related to our setup, but we cannot identify the
root cause. Subsequently, we focus on experiments with 1.52 Mpkt/s and 6.24 Mpkt/s
where we observe low latencies for most packets.

6.2.3 The impact of recording interrupts
HVNet provides a Python script that records the interrupts on VMs and the hypervisor.
During our measurements, we noticed that the interrupt recording (IR) script was always
executed on the hypervisor, but not on the VMs, regardless of the program parameter.
This was the reason we initially observed large spikes in latencies for the containers,
as shown in Figure 6.6. Since containers share the kernel with the host, running the
interrupt recording script on the host affects the tail latency measured inside a container.
In the VM we did not measure a difference.

In addition to the experiments with and without interrupt recording, we present in
Figure 6.6 measurements for a real-time kernel. All measurements are performed with
1.52 Mpkt/s. A Linux kernel with the nohz patch cannot perform consistently for higher
percentiles due to interference from other tasks. For systems which rely on the comple-
tion of a task, or else money or even humans will be lost, this is insufficient. A real-time
kernel is used for scenarios where missing deadlines is unacceptable. It guarantees that
a process finishes its calculation in a certain amount of time without being affected
by the state of the remaining system. A real-time kernel completely mitigates outliers
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Figure 6.6: Impact of interrupt recording on LXC: real-time and nohz kernel

for higher percentiles, as can be seen in Figure 6.6. Even in the 99.999th percentile,
containers achieve the same stable latencies of around 100 µs in the worst case, just like
a nohz enabled kernel. More stable latencies come with a price: The latencies in the
99.9th percentile are slightly worse. The sharp increase with the nohz patch occurs after
the 99.9th percentile, while with a real-time kernel it appears sooner. Finally, the raw
data reveal that not a single data point with significantly higher latency was captured.

Therefore, the isolation for containers is inferior to that of VMs. Tasks can be scheduled
on the cores assigned to a container even though we removed the cores from the host
with CGroups. A reason why this is possible is scheduler load balancing. Scheduler
load balancing is a mechanism of the kernel that moves tasks between cores. The
Linux admin guide [53] specifically recommends to disable load balancing on real-time
systems to minimize system overhead. The reason why this is not an issue for VMs is
that the kernel parameter isolcpus removes the isolated cores from the load balancing
mechanism. In CGroups v1 there is a flag to disable scheduler balancing; however,
in v2 this flag is not yet implemented. Nevertheless, kernel developers are working to
implement an option for the partition parameter of the cpuset subsystem that mimics
the behavior of isolcpus. The last message in the discussion thread for the proposed
patch was sent in June 2022 [54].

This insight answers RQ3. When running additional programs on the hypervisor or
container host, latency spikes infrequently in a container. In contrast, a VM is not
affected by our interrupt recording program running on the hypervisor. To reduce the
difference in tail latencies, we recommend a real-time kernel. As demonstrated, a real-
time kernel completely mitigates spikes in tail latencies.
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6.2.4 Kernel parameter isolcpus
The kernel parameter isolcpus is used to exclude a core from the scheduler and load
balancing, preventing processes from being scheduled on an isolated core. The official
Linux documentation recommends not to use this parameter and instead to rely on
the CGroups cpuset subsystem [49]. However, many older projects still rely on this
parameter, so we tested the behavior of isolcpus in combination with CGroups.

Although the parameter excludes a core from scheduling, a process may still be scheduled
on an isolated core if there is a relevant CGroup option, or the sched_setaffinity
system call is used [35]. Furthermore, kernel tasks can be scheduled on an isolated
core. An experiment with the isolcpus kernel parameter confirms these assertions. We
isolate all cores that are passed to the container with the parameter isolcpus=24,25,26
and keep the housekeeping threads exclusively on core 24 inside the container. No
difference in latencies is observed.

In another attempt to investigate this parameter further, we isolate only the CPU cores
that are processing packets and omit the housekeeping core for the container. Therefore,
we use the parameter islcpus=25,26. Regardless, we do not record any difference.
We conclude that the kernel parameter isolcpus in combination with CGroups is not
relevant for further investigation.

6.2.5 Disabling isolation optimizations
The experiments in this Section investigate the impact of previously established core
isolation on network latencies. Without the CGroup and slice isolation efforts, the
containers will have access to any CPU core. Furthermore, the host system also has
access to all cores. Any thread on both the host and container could be scheduled on any
core. This includes housekeeping threads, interrupts, and any other program running
on the computer. The forwarder application tries to optimize the choice of CPU cores to
match the NUMA nodes, where the NICs are attached. The results can be reproduced
by setting the –lxc-disable-isolation flag when launching HVNet.

This experiment runs with a nohz enabled kernel with LXC. We plotted the 5000 worst-
case measurements in Figure 6.7 and 6.8 for four events: our isolation mechanisms are
disabled and then enabled for a nohz patched kernel and a real-time kernel. In all
experiments, the worst-case latencies are much improved when the cores are isolated.
The large spikes in latencies in Figure 6.7a and 6.7b could be caused by an interrupt
or by another thread scheduled on the processing core. It is notable that both spikes
occurred at the same timestamp within the experiment. The real-time kernel makes the
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6.2 Base experiment

latencies more predictable. In Figure 6.8a and 6.8b we can see that all packets had in
the worst case a latency of slightly more than 120 µs regardless of the packet rate.

In conclusion, our previously developed core pinning and isolation mechanisms reduce
the worst-case latencies. We recommend using the presented optimizations for reliable
low-latency networking with containers.
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Figure 6.7: 5000 worst-case latencies with and without isolation for a nohz kernel
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Chapter 7

Conclusion

This thesis aimed to evaluate the viability of containers for low-latency networking.
Based on our implementation and latency measurements, it can be concluded that low-
latency software frameworks like DPDK can run in a container and that the measured
network latencies of containers and VMs are identical. However, the isolation of con-
tainers is not as effective as the one of VMs: latency spikes occur when running other
software on the container host. This behavior can be mitigated by using a real-time
kernel. Finally, we identified a difference in average latencies of 1.4 µs between Debian
Buster and Bullseye - independent of virtualization.

Initially, we selected LXC as our reference implementation for containers and integrated
it into the testbed, the orchestration service pos [16], and incorporated it into HVNet.
We presented the setup necessary to pass through PCI devices and VFs to a container.
By attaching VLAN IDs to VFs, we mimic HVNet and can create arbitrary network
topologies on a single host. Various optimizations improving the isolation of the process-
ing cores were applied, and we showed that these optimizations improved tail latencies.

With our measurements, we made numerous observations. First, virtualization can
outperform bare metal. Second, we identified spikes in tail latencies when running
other software on the container host. Third, a real-time kernel eliminates these spikes.
Fourth, the latencies of containers are identical compared to VMs. Fifth, there is a
difference of 1.4 µs in network latencies between Debian Buster and Bullseye. Sixth,
measuring latencies accurately with high precision is not a trivial problem and requires
careful consideration and a special hard and software stack.

As initially explained, edge computers collect and analyze sensors data in an industrial
environment. On the basis of our research, we recommend containers as a virtualization



solution. However, threads running on the container host can affect the tail latencies
of a real-time application inside a container. For that reason, containers fulfill only the
requirements of a soft real-time system but not a hard real-time one. Heavy machinery
or lives must not depend on reliable latencies of containers. Future work might be able
to resolve the remaining issue so that containers may be deployed in critical systems.

Many adaptations, extensions, and experiments have been left to future work due to
time and scope constraints. More research of containers in combination with low-latency
networking could follow up on this thesis:

• Experiments with SR-IOV: Due to the comprehensive analysis of the base
setup, we could not collect measurements for a more intricate topology with VFs.
Our prototype implements SR-IOV in the same way as HVNet does and is func-
tional according to early tests. However, we did encounter an issue with the VF
driver IAVF, which causes occasional crashes. In future work, we can solve the
issue and compare the impact of using SR-IOV on containers and VMs.

• Flow based experiments: The HVNet paper [4] attained the results by running
flow-based experiments. Each VM is attached to a VF from the ingress and
egress NICs, which allows injection of traffic into any node. Since this setup was
previously only tested with the splitter setup, we reserve the exact comparison
between our work and the results of HVNet for future work.

• Comparison with other container solutions: There is a wide array of con-
tainer solutions available. Due to the lack of literature, a comparison in terms
of tooling and network latencies between the most popular ones such as Docker,
OpenVZ, and LXC could be an interesting study.

• CGroups v1 with Buster: With CGroups v1 it is possible to disable the load
balancing mechanism of the scheduler. This could eliminate the observed latency
spikes. Furthermore, when downgrading to CGroups v1, the container implemen-
tation could be backported to Debian Buster for the best comparability with other
work [4], [17].

• Impact of NUMA traversal on latencies: When creating larger topologies,
it is not always possible to assign CPU cores while respecting NUMA optimality.
Previous work [21] already measured the impact of NUMA traversals on bandwidth
and latency. However, they focused on bandwidth analysis and only denote the
latency for a NUMA traversal as 1.7 µs without further details.
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Chapter A

Appendix

List of acronyms

pos plain orchestration service, host and VM orchestrator for a testbed [16]
OT operational technology, hard- and software specialized on operating
manufacturing plants and assembly lines

IT information technology, hard- and software involved with creating, processing,
storing, securing and exchanging data; typically in a business context

PLC programmable logic controller, industrial computer specialized for controlling a
production or manufacturing line; trimmed for reliability, low maintenance and low
latency

VM virtual machine, form of virtualization, often called heavy-weight virtualization
due to virtualization an entire OS and hardware

NIC network interface card, facilitate networking tasks
SR-IOV single root I/O virtualization, virtualizes physical hardware into multiple
lightweight VFs

PF physical function, a PCIe function supporting the configuration of the SR-IOV
specification

VF virtual function, a lightweight PCIe function attached to a physical function with
SR-IOV

LXC Linux containers, a toolbox for creating and managing lightweight system
containers

DPDK Data Plane Development Kit, a framework for accelerating packet processing
with user space tooling



Chapter A: Appendix

IPMI Intelligent Platform Management Interface, set of specifications for out-of-band
control of computers

BMC baseboard management controller, dedicated embedded microcontroller;
handles out-of-band communication with IPMI

vBMC virtual baseboard management controller, a BMC implemented in software
only

VLAN virtual local area network, layer 2 partitioning of networks
IOMMU input–output memory management unit, maps device addresses to physical
memory

PID process identifier, 16-bit ID for uniquely identifying a process
OS operating system, the operating system running on a PC
DuT Device under Test, a device that is investigated during experiments
pcap packet capture, an API for capturing network traffic; includes information of
layer 2 - 7

VMM virtual machine monitor, manages access to physical resources for virtual
machines

KVM kernel-based virtual machine, open source virtualization technology for Linux
URLLC ultra reliable low-latency communication
RCU read-copy update, synchronization mechanism of the Linux kernel
vEth virtual Ethernet, always created in pairs, connect namespaces or different vEth
interfaces with a Linux bridge

DMA direct memory access, bypasses the CPU for memory access
HPC high-performance computing, highly parallelized computing procedures utilizing
entire datacenters of computers

TLB translation lookaside buffer, caches translations of mappings from physical to
virtual address space

NUMA non-uniform memory access, a set of CPU cores has its own memory
controller bypassing the memory bottleneck

SSH secure shell, protocol for encrypting a connection; most frequently used to
transmit commands to a remote host

NAT network address translation, maps from one IP address space into another
HDR high dynamic range, shows more details for higher values
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